

Body Material:	PVC, PP, PVDF
Float Material:	PP, PE
Size:	$1 / 4^{\prime \prime}-4^{\prime \prime}$
Dynamic Seals:	Teflon Encapsulated Viton
Seals:	EPDM, VITON, KALREZ
Connections:	FNPT Threaded $\left(1 / 4^{\prime \prime}-1^{\prime \prime}\right)$
	MPT $\left(11 / 2^{\prime \prime}-4^{\prime \prime}\right)$

Materials of Construction:

PVC: Type 1, Class 12454B, ASTM D1784
PP: Class PP 110B76383, ASTM D4101
PVDF: Type 1, ASTM D3222
Seals: EPDM, FPM, KALREZ

Guide Specification: The SIMTECH FTV Series Float Valve is designed to provide maximum efficiency in controlling the liquid level in storage tanks. They can be installed by using a tank adapter directly through the tank wall or with simple piping over the top edge of the tank. The FTV will automatically keep your tank at desired level, preventing overflow by providing positive shutoff. Dynamic seal o-rings are Teflon encapsulated Viton for long life and trouble free operation. The reliability of this valve has been proven in thousands of installations involving acids, caustics, plating solutions, clean and waste water

Flow Rate in Gallons Per Minute

Size	$\mathbf{1 / 4}^{\prime \prime}$	$\mathbf{1 / 2} \mathbf{2}^{\prime \prime}$	$\mathbf{3 / 4} \mathbf{4}^{\prime \prime}$	$\mathbf{1}^{\prime \prime}$	$\mathbf{1 1}^{\mathbf{1 /}} \mathbf{2}^{\prime \prime}$	$\mathbf{2}^{\prime \prime}$	$\mathbf{3}^{\prime \prime}$	$\mathbf{4}^{\prime \prime}$
$\mathbf{C v}$	0.8	3.5	4.4	5.9	18.2	25.4	30.6	35.8

Cv is the number of gallons per minute of water at a temperature of $68^{\circ} \mathrm{F}$ that will flow through a valve with a 1 psi pressure differential at a specified travel.

Pressure/Temperature Graph: Working PSI/Fahrenheit

INLET PRESSURE - PSIG

INLET PRESSURE - PSIG

Performance curves show the flow rate of FTV valves at its fully open position. These curves can be varied depending upon the flow and the pressure characteristic of each system and at each different pressure setting. Test data performed with 68° water and 160 psig maximum pressure.
These performance curves will be changed with higher viscosity liquid and/or higher temperature. Consult manufacturer directly for custom products or special applications.

$$
W W W \cdot S i m i d m
$$

Dimensional Data

Nom. Size	A	B	C	D
$1 / 4^{\prime \prime}$	2.00	3.20	0.40	10.00
$1 / 2^{\prime \prime}$	3.00	4.20	0.60	12.00
$3 / 4^{\prime \prime}$	3.50	5.00	0.80	13.50
$1^{\prime \prime}$	3.50	5.00	0.80	13.50
$11 / 2^{\prime \prime}$	4.00	4.80	1.70	18.00
$2^{\prime \prime}$	4.00	4.80	1.70	18.00
$3^{\prime \prime}$	4.50	6.50	2.50	22.00
$4^{\prime \prime}$	5.00	7.30	3.30	24.00

START TO OPEN: When the Float drop 6 degree from the horizontal position. FULLY OPEN: When the float drop 18 degree from the horizontal position.

